
Journal of Magnetic Resonance 162 (2003) 269–283

www.elsevier.com/locate/jmr
BlochLib: a fast NMR C++ tool kit

Wyndham B. Blanton*

Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Mail stop 66-208, 1 Cyclotron Rd.,

Berkeley, CA 94720, USA

Department of Chemistry, University of California, Berkeley, CA 94720, USA

Received 27 September 2002; revised 10 January 2003
Abstract

Computational power, speed, and algorithmic complexity are increasing at a continuing rate. As a result, scientific simulations

continue to investigate more and more complex systems. Nuclear magnetic resonance (NMR) is no exception. NMR theory and

language is extremely well developed, that simulations have become a standard by which experiments are measured. Nowadays,

complex computations can be performed on normal workstations and workstation clusters. Basic numerical operations have also

become extremely optimized and new computer language paradigms have become implemented. Currently there exists no complete

NMR tool kit which uses these newer techniques. This paper describes such a tool kit, BlochLib. BlochLib is designed to be the next

generation of NMR simulation packages; however, the basic techniques implemented are applicable to almost any problem.

BlochLib enables the user to simulate almost any NMR idea both experimental or theoretical in nature. Both classical and quantum

mechanical techniques are included and demonstrated, as well as several powerful user interface tools. The total tool kit and

documentation can be found at http://waugh.cchem.berkeley.edu/blochlib/.

� 2003 Published by Elsevier Science (USA).
1. Introduction

Simulations in nuclear magnetic resonance (NMR)

are often essential towards the development and un-
derstanding of the physical nature of any NMR ex-

periment. The theory for NMR is so well established

[1] that if a simulation does not agree with the ex-

periment, typically, the experiment has an error and

not the simulation. As a result there is a large amount

of feedback between simulation and experiment. For

example, in a recent paper [2] a unique theory was

presented to separate the anisotropic dipolar couplings
from the isotropic couplings via control of the average

Hamiltonians over a series of experiments. There are

numerous sub-pulse sequences that could have been

used to generate the desired average Hamiltonians.

Experimentally, however, there are fewer able to ad-

here to the hardware limitations of the NMR spec-

trometer. Simulations were invaluable as a method to
* Fax: 1-510-486-5744.

E-mail address: magneto@dirac.cchem.berkeley.edu.

1090-7807/03/$ - see front matter � 2003 Published by Elsevier Science (US

doi:10.1016/S1090-7807(03)00035-1
determine both working pulse sequences and the best

ones for experiment.

These types of simulations, designated experimental

evolutions (EEs) (see Fig. 1a), are some of the simplest
to construct and generalize. Programs such as Simpson

[3] have generalized these forms of simulations into a

simple working structure not unlike programming a

spectrometer itself. EEs typically require only a few al-

gorithms to solve the dynamics of the systems, the rest

of the program is simply a user interface to input ex-

perimental parameters (e.g., pulse sequences, rotor an-

gles, etc.). EEs are essential to understand or discover
any anomalies in experimentally observed data. Another

common usage of EEs is to give the experimenter a

working picture of what to expect from the experiment.

Surprisingly, there are very few complete NMR EE

packages. In fact, up until this tool kit, Simpson seems to

be the only one publicly available.

The other class of simulation, designated theoretical

evolutions (TEs) (see Fig. 1b), are used to explore the-
oretical frameworks and theoretical modeling. Of course

there can be much overlap between the EEs and TEs,

but the basic tenet of a TE simulation is they are a
A).

http://waugh.cchem.berkeley.edu/blochlib/
mail to: magneto@dirac.cchem.berkeley.edu

Fig. 1. Many basic simulations can be divided into two main sub-

groups: (a) experimental evolutions (EEs), and (b) theoretical evolu-

tions (TEs). The main object of both is some sort of generated data and

both typically require some input of parameters. EEs tend to use a

solid Kernel driver, whereas the TEs can use many different Kernels,

feedback upon itself, use the generated data in other kernel, and so

forth. For this reason EEs can be developed to a large degree of

generality on the input parameters (e.g., various different types of pulse

sequences). Their main function is a parameter parser where much

attention is given to the interface. TEs, on the other hand, are usually

complex in the kernels and transparent interfaces are not necessarily

their primary goal.

270 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283
designed to explore the physical properties of the sys-

tem, even those not assessable by experiments, to de-

velop an understanding and intuition about the systems

involved. Simulations of singular interactions (e.g., in-
cluding only radiation damping in a spin system) to see

their effect is one such example. Development of a

master TE program proves near impossible simply be-

cause of the magnitude of different methods and ideas

used to explore an arbitrary model. The best one can do

today is to create a tool kit that provides the most

common algorithms, structures, and ideas used for the

theoretical modeling. These tool kits should be a simple
starting places for more complex ideas (see Fig. 1). A

good overview of the methods desired in NMR can be

found in [4].

Currently there is only one such package available to

the NMR spectroscopists, Gamma [5]. Gamma made an

initial leap forward in terms of definitions of many of

the necessary ideas to stimulate TEs. The main focus of

Gamma is liquid state NMR (the solid state practicali-
ties are becoming developed in later versions). However,
NMR experimentation is evolving past the basic high
field liquid experiment. Complex interactions like the

demagnetizing field and radiation damping are becom-

ing important and are best treated classically (see [6] and

references there in). Solid state NMR (SSNMR) is being

used more frequently and with better and better reso-

lution and techniques. Ex situ NMR is a new branch

currently under exploration [7–9] requiring detailed

knowledge of magnetic fields in the sample. Low field
experiments (see [10] and references there in) are also

becoming more common. Pulse shaping [11] and multi-

ple rotor angle liquid crystal experiments [12] are also

becoming more frequent. Not only have new develop-

ments been encountered in NMR, but relatively new

developments in computer science and computer power

have recently opened new avenues towards numerical

computations.
The need for code efficiency in numerical computa-

tion is self evident. However, to create fully optimized

numerical code involves a deep understanding of the

microprocessor architecture, instructions sets, and gen-

eral memory handling. But the time it takes to write

machine code in a fully optimized form is daunting, thus

programming in another programming language is

preferable for complex projects. Several computer pro-
gramming languages exist, each with theirs own benefits

and challenges. The easiest language to use for almost

any task is a high level language (scripting languages

which run non-compiled code). Matlab (Mathworks),

Mathematica (Wolfram), Python, and Tcl/Tk offer a

wide variety of numerical algorithms, complex data

types, and easier syntax. Typically, however, whatever is

gained in ease of use, is lost in either speed or extend-
ibility. The interfaces and numerics can be built for these

scripting languages in a lower level language (usually C),

but building the interfaces for types of languages tends

to make the lower level language harder to code and

manage.

The most common language used for numerical speed

is Fortran. The compiler is fast, but it is still up to the

programmer to create the optimized code. The basic
problem with the Fortran language is its syntax. Func-

tions, the basic drivers of any program, are very hard to

read, creating complex data structures is next to im-

possible, and separating the user interface from the

numerics is also very difficult. The next choice for a

language/compiler is C. It extends Fortrans ability for

creating complex data types and character and string

handling. However, to obtain highly optimized code,
one must still write it out by hand as in Fortran (see Fig.

2).

C++ allows the same basic syntax as C but invokes

the idea of objects, object oriented programming

(OOP), inheritance and templates [13,14]. These addi-

tions alter the way one thinks about programming in

general, especially in scientific programming. The ob-

Fig. 3. This figure shows speed test for the common vector operation

a ¼ aþ b � constant (daxpy: Double precision A times X Plus Y) for

doubles in Millions of Floating point operations (MFLOPS) per sec-

ond performed on a 700MHz Pentium III Xeon processor running

Linux (Redhat 7.2). Each code sample was compiled using the GNU

compiler (gcc) using the same optimizations (-O3-finline-functions-

funrool-loops). Several different data types were tested. The most

common data types, C and Fortran, show faster initial speeds because

there is no overhead in the algorithm (no optimization see Fig. 2a). The

remaining data are for the optimized algorithms. The Netlib F77 da-

xpy algorithm was taken from the Netlib website (http://netlib.org/).

The valarray type is available for some C++ standard libraries and

is an expression template vector class. The coord<> object is in

BlochLib and is defined as a fixed size vector, thus its speed can be

greatly improved due to loop unrolling. The Vector data are for the

BlochLib vector object. As the figure shows, the BlochLib data con-

tainers are comparable in speed to those of the highly optimized

valarray and Netlib versions. The L2 cache (2 Mb) boundary is

visible for the Xeon processor.

Fig. 2. A comparison of the various methods to write the DAXPY

(Double precision A times X Plus Y) algorithm where (a) shows how to

program the algorithm in C using the simplest method. (b) shows how

a non-expression template C++ vector object code would interpreted

by the compiler, and (c) shows how an expression template C++ vector

object code would be interpreted by the compiler. The unrolling of (c)

is performed at compilation time, not at runtime, thus increasing the

speed by approximately a factor of 3.

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 271
ject is not only a complex data type (a set of other data

types) but also defines a set of allowed operations and

functions that the object can perform. The object (re-

ferred to in C++ as a class) in scientific programming

should embody the total ability of the theoretical idea.
For example a vector consists of an array numbers. A

vector has specific rules about addition, multiplication,

etc. that are easily contained in the objects definition.

Unlike C or Fortran, operators (like �+�, �)�, �*�, etc.)

can be defined specifically for these objects making

code readability and program interfaces much easier to

use. Users can simply write the code as one thinks of

the problem analytically (e.g., a ¼ aþ b � 3), rather
then as a function (e.g., daxpyða; b; 3Þ, as in Fig. 2).

Given M data types, and N functions, templates can in

principle reduce the OðM � NÞ number of procedures

in a Fortran environment to OðN þMÞ procedures in a

C++ environment.

C++ has typically been avoided for scientific pro-

gramming because of certain speed issues using the op-

erator formalism [4,15]. However, a relatively new
technique called expression templates [16,17] removes

this older problem. Fig. 2c shows how the compiler

treats a expression template object. As Fig. 3 shows, the

speed in MFLOPS (millions of floating point operations

per second) of a standard vector operation is compara-
ble to that of the hand coded version and the Fortran

versions. If one knows the length of the vector (in Fig. 3

called coord<>) then we can effectively unroll the loops

to allow for machine instruction optimizations using

meta programming techniques [18–20].

In this paper we wish to present BlochLib designed to

be the next generation NMR simulation tool kit. It in-

corporates modern computational techniques, data
structures and algorithms available. Because the tool kit

is quite large (the documentation alone is over 1000

pages), this paper will serve as an introduction to the

techniques used as well as a general overview of library

itself. The following section will discuss some of the

computational techniques and generic classes of NMR

simulations that drive the basic design of the BlochLib.

Following the design overview, several example pro-
grams will be discussed. They will attempt to demon-

strate both the generality of the library as well as how to

set up a basic program flow from parameter inputs to

data output.

272 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283
2. Design

The design of a given tool kit relies heavily on the

objectives one wishes to accomplish. These objectives

then determine the implementation (code language, code

structure, etc.). The key objectives for BlochLib are, in

order of importance, speed, ease of use, the incorpora-

tion of existing numerical techniques and implementa-

tions, and the ability to easily create both TEs and EEs
for NMR in almost any circumstance. Below, several

issues are addressed before the major design of BlochLib

is discussed.

2.1. Existing numerical tool kits

For the quantum mechanical aspects of NMR, the

basic operation is matrix multiplication. The same ex-
pression template methodology can also by applied to

matrices. However, there are certain matrix operations

that will always require the use of a temporary matrix.

Matrix multiplication is one such operation. One can-

not unroll these operations because an evaluated point

depends on more then one element in the input. So the

task becomes one of optimizing a matrix–matrix mul-

tiplication. This task is not simple; in fact it is probably
one of the more complex operations to optimize be-

cause it depends dramatically on the systems architec-

ture. A tool kit called ATLAS (automatically tuned

linear algebra software) [21] performs these optimiza-

tions.

The introduction of the fast Fourier transform made

possible another class of simulations. Since that time

several fast algorithms have been developed and imple-
mented in a very efficient way. The fastest Fourier

transform in the west (FFTW) [22] is one of the best

libraries for the FFT.

Another relatively recent development in scientific

simulations is the movement away from supercomputers

to workstation clusters. To use both of them effectively

one needs to know how to program in parallel. The

message passing interface (MPI) [23] provides a generic
interface for parallel programming.

Most any scientific endeavor eventually will have to

perform data fitting of experimental data to theoretical

models. Data fitting is usually a minimization process

(usually minimizing a v2 function). There are many

different types of minimization routines and implemen-

tations. One used fairly frequently for its power, speed,

multiple types of algorithms is the CERN package
MINUIT [24].

2.2. Experimental and theoretical evolutions for NMR

simulations

As stated above TEs tend to require more possible

configurations then an EE program. EEs tend to be
heavily parameter based using a main driver kernel,
while a TEs are basically open ended in both parameters

and kernels (a better assumption about a TE simulation

is that one cannot really make any assumptions). Fig. 1

shows a rough diagram of an NMR simulation for both

types (of course it can be applied to many simulation

types).

EEs are easily parsed into four basic sections: Pa-

rameters, Parameter parser, Main Kernel, and Data

Output. The Parameters define a program�s input, the

Parameter parser decided what to do with the parame-

ters, the Main Kernel performs the desired computation,

and the Data Output decides what to do with any gen-

erated data. BlochLib is designed to make the Parame-

ters, Main Kernel and Data Output relatively simple for

any NMR simulation. The Parameter Parser tends to be

the majority of programming an EE. BlochLib also has
several helper objects to aid in the creation of the parser.

The objects Parameters, Parser and ScriptP-

arse are designed to be extended. They serve as a base

for EE design. With these extendable objects almost any

complex input state can be treated with minimal pro-

gramming effort.

The Main Kernel drivers need to be able to handle

two distinct classes of NMR simulation the quantum
mechanical and the classical. The quantum mechanical

aspect involves solving the Heisenberg form of the

Schr€oodinger equation

dU
dt

¼ �i

�h
HðtÞU : ð1Þ

The propagator, U , and Hamiltonians, HðtÞ, are ma-
trices with the solution to Eq. (1) given by

U ¼ T exp

�
� i

Z
HðtÞdt

�
; ð2Þ

where T is the Dyson time ordering operator. This

evolves a density matrix, q, as

qðtÞ ¼ U � q � U y: ð3Þ
Thus the two most important algorithms for the kernel

are the matrix exponentiation and the matrix multipli-

cation. In our simulation framework, we can only ap-

proximate the integral in Eq. (2) as

U ¼
Yt2
j¼t1

exp
�
� iHðtjÞDtj

�
; ð4Þ

where Dti is a small time step, where small means ap-

proximately an order of magnitude less then the inverse

of the largest eigenvalue of the Hamiltonian or the in-

verse of the rate of variation of the Hamiltonian, which
ever is smaller. Several approximations can be made if

HðtÞ is not a function of time

UðtÞ ¼ expð�iH � tÞ ð5Þ

or if the Hamiltonian is periodic.

Fig. 4. The basic design layout of the BlochLib NMR tool kit. The

Utilities, Parameters, Aux Libs, Containers, and Kernels sections

comprise the basic beginning of the tool kit and have little to do with

NMR. They form a basic generic data structure framework to perform

almost any high performance scientific simulations. The Quantum

Mechanic and Bloch Equation sections assemble objects that comprise

the backbone for the NMR simulations. Finally the Programs section

assembles the NMR pieces into functional programs which perform

general NMR simulations (like Solid), calculate arbitrary fields from

coil geometries, and a wide range of investigative programs on NMR

systems (see Table 4).

Table 1

Numerical ordinary differential equation solver algorithms available in BlochLib

Algorithm Class name Engine_T functionsa

Cash–Karp–Runge–Kutta fifth order method ckrk Function

Bulirsch–Stoer extrapolation method bs Function

Semi-implicit Bulirsch–Stoer extrapolation method stibs Function, Jacobian

a Functions that must be defined in the input object class (see text).

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 273
The classical aspects of NMR are treated by solving
the Bloch equations,

d~MM
dt

¼ �c~MM �~BBðtÞ; ð6Þ

where ~MM is the magnetization and ~BBðtÞ is the magnetic

field at a given time. Both ~MM and ~BBðtÞ are 3-vectors in

Cartesian space and the equations therefore represent

ordinary differential equations (ODE). There are several

algorithms to solve ODE [25]. BlochLib contains three

different solvers (see Table 1).

With these basic ideas of a TE and EE, the basic

design of BlochLib will be described in the next section.

2.3. BlochLib layout

BlochLib is written entirely in C++. Fig. 4 shows the

basic layout of the tool kit. It is designed to be as

modular as possible with each main section shown in

Fig. 4 treated as separate levels of sophistication. The

first levels are the main numerical and string kernels, the
second levels utilize the kernels to create valid mathe-

matical objects, the third levels uses these objects to

perform complex manipulations, and the fourth levels

creates a series of modules specific to NMR for both the

classical and quantum sense.

It uses C++ wrappers to interface with MPI, ATLAS,

FFTW, and MINUIT. BlochLib uses MPI to allow for

programming in parallel and to pass the parallel objects
to various classes to achieve a seamless implementation

in either parallel or serial modes. It also allows the user

to put and get the libraries basic data types (vectors of

any type, matrices of any type, strings, coords of any

type, vectors of coords of any type) with simple com-

mands to any processor. The ATLAS library provides

the backbone of the matrix multiplication for BlochLib.

Fig. 5 shows you some speed tests for the basic quantum
mechanical NMR propagation operations. You may

notice that BlochLib�s speed is slower then ATLAS�s
even though the same code is used. The reason for this

discrepancy is discussed in Section 2.4. BlochLib uses

FFTW to perform FFTs on its vectors and matrices,

and allows the usage of the MINUIT algorithms with

little or no other configuration.

The containers are the basic building blocks. It is
critical that the operations on these objects are as fast as

possible. The optimizations of vector operations are

critical to performance of classical simulations as the
solving of differential equations take place on the vector

level. Matrix operations are critical for quantum me-

chanical evolutions and integration. For this reason the

coord, Vector, and matrix classes are all written

using expression templates, with the exception of the

matrix multiplication and matrix division which use the

ATLAS and LU decompositions algorithms respec-
tively. The coord<> object is exceptionally fast and

should be used for smaller vector operations. The co-

ord<> object is specifically made for 3-space repre-

sentations, with specific functions like rotations and

coordinate transformations which only function on a

Fig. 5. This figure shows a speed test for the common NMR propa-

gation expression c ¼ a � b � ay in Millions of Floating point opera-

tions (MFLOPS) per second performed on a 700MHz Pentium III

Xeon processor running Linux (Redhat 7.2). Each code sample (except

for Matlab) was compiled using the GNU compiler (g++) using the

same optimizations (-O3-finline-functions-funrool-loops). Both a, b,
and c are full, square, complex matrices. ATLAS shows the fastest

speed, but BlochLib using ATLAS as a base is not far behind. An

existing C++ library, Gamma, shows normal non-optimized perfor-

mance. Matlab�s algorithm is slowed appreciably by this expression

because the overhead on its use of temporaries is very high. It may be

interesting to note that the speed of Matlab�s single matrix multiply

(c ¼ a � b) is much better (and close to that of Gamma�s) then the

performance shown for (c ¼ a � b � ay) because of this temporary

problem. The matrix sizes are incremented in typical numbers of spin

1/2 particles. A �1 spin 1/2� matrix is a 2� 2, a �5 spin 1/2� matrix is

32� 32, and a �9 spin 1/2� matrix is 512� 512.

274 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283
3-space. However, any length is allowed, but as Fig. 3

shows, the Vector speed approaches the coord<> for
large N, and with much less compilation times. The

matrix class has several structural types available: Full

(all elements in the matrix are stored), Hermitian (only

the upper triangle of the matrix are stored), Symmetric

(same as Hermitian), Tridiagonal (only the diagonal, the

superdiagonal, and the subdiagonal elements are

stored), Diagonal (only the diagonal is stored), and

Identity (assumed ones along the diagonal). Each of
these structures has specific optimized operations,

however, the ATLAS matrix multiplication is only used

for Full matrices. There are also a wide range of other

matrix operations: LU decompositions, matrix inverses,

QR decompositions, Gram-Shmidt ortho-normaliza-

tion, matrix exponentials and matrix logarithms.1 The

Tridiagonal structure has an exceptionally fast LU de-
1 The algorithms used for matrix exponentials and matrix loga-

rithms are based on those in GAMMA [5].
composition. The Grid class consists of a basic grid
objects and allows for creation of rectangular Cartesian

grid sets.

The utilities/IO objects include several global functions

that are useful stringmanipulation functions. These string

functions power the parameter parsing capabilities of

BlochLib. Several basic objects designed to manipulate

parameters are given. The Parser object can be used to

evaluate string input expressions. For instance if
‘‘3 � 4= sinð4Þ’’ was entered, the Parser can evaluate this

expression to be�15:85. The object can also use variables

either defined globally (visible by every instance of

Parser) or local (visible only by the specific instance of

Parser). For examples, if a program registers a variable

x ¼ 6, the Parser object can use that variable in an ex-

pression, like ‘‘sinðxÞ � 3’’, and return the correct value,

�0:83. The Parameters object comprises the basic pa-
rameter input capabilities. Large parameter sets can be

easily grouped into sections and passed between other

objects in the tool kit using this object. The parameter sets

can be nested (parameters setswithin parameters sets) and

separated. Creation of simple custom scripts can be per-

formed using the ScriptParse object in conjunction

withParser. TheScriptParse object is used to define

specific commands to be used in conjunction with any
mathematical kernels.

Data output can be as complicated as the data input.

The Parameters object can output and update specific

parameters. Any large amount of data (like matrices and

vectors) can be written to either Matlab (5 or greater)

format. One can write matrices, vectors, and coords, of

any type to the Matlab file, as well as read these data

elements from a Matlab binary file.2 Several visualiza-
tion techniques are best handled in the native format of

NMR spectrometer software, so a VNMR (Varian)

reader and writer of 1D and 2D data are available.

XWINNMR (Bruker) and Spinsight (Chemagnetics)

data readers are also available as well as a WAVE audio

format reader and writer. Any other text or binary

formats can be constructed as needed using the basic

containers.
The next level comprises the function objects, mean-

ing they require some other object to function properly.

The XYZshape objects require the Grid objects. These

combine a set of rules that allow specific Cartesian

points to be included in a set. It basically allows the

construction of non-rectangular shapes within a Carte-

sian grid. For instance the XYZcylinder object will

remove all the points not included in the cylinder di-
mensions. Similar shapes exist for slice planes and

rectangles, as well as the capability to construct other

shapes. The shapes themselves can be used in combi-

nation (e.g., you can easily specify a grid to contain all
2 Much of the Matlab source is based on those in GAMMA [5].

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 275
the points within a cylinder and a rectangle, using nor-
mal operators and (&&) and or (||), ‘‘XYZcyl-

inder && XYZrect’’).

The ODE solvers require function generation objects

(Table 1 lists the available ODE solver algorithms). The

solvers are created as generically as possible, allowing

for various data types (double, float, complex) and

containers (Vectors, coords, matrices, and vectors of

coords). The ODE solver requires another object that
defines a function. All the algorithms require the

same template arguments, template<class En-

gine_T, class ElementType_T, class Con-

tainer_T>. Engine_T is another class which defines

the function(s) required by the solver shown in Table 1

column 3. ElementType_T is the precision desired or

another container type (it can be things like double,

float, coord<>, Vector<>, etc.). The Element-

Type_T is the type inside the container, Container_T.

For instance if ElementType_T¼double, then

Container_T will usually be Vector<double>or

coord<double, N>. The Cash-Karp-Runge-Kutta

fifth order method (the ckrk class) is a basic work horse

of medium accuracy. It is a good first attempt for at-

tempting to solve ODEs [25,26]. The Bulirsch–Stoer

extrapolation method (the bs class) is of relatively high
accuracy and very efficient (minimizes function calls).

However, stiff equations are not handled well and it is

highly sensitive to impulse type functions. The

BlochSolver object uses the bs class as its default

ODE solver [25,27–29]. The semi-implicit Bulirsch–

Stoer extrapolation method is base on the Bulirsch–

Stoer extrapolation method for solving stiff sets of

equations. It uses the Jacobian of the system to handle
the stiff equations by using a combination of LU de-

compositions and extrapolation methods [25,30]. All the

methods use adaptive steps size controls for optimal

performance.

Finally, the stencils perform the basic finite difference

algorithms over vectors and grids. Because there is no

array greater then two dimensional in BlochLib yet, the

stencils over grid spaces (which are treated as vectors of
coordinates, not 3D arrays) are treated much differently

then they would be over a standard three dimensional

array. Determination of nearest neighbors is a harder

procedure using this vector representation, and the class

StencilPrep attempts to determine the neighbors.

This procedure then allows for an apparent 3D finite

difference algorithm to be applied to the vectorized grid

data. The 3D algorithms are included in this version of
BlochLib for completeness and are slow due to the

preparation step. The N-dimensional array and tools

should be included in later versions.

At this point the tool kit is split into a classical section

and a quantum section. Both sections begin with the

basic isotropic information (spin, quantum numbers,

gamma factors, labels, mass, momentum).
The quantum mechanical structures begin with the
basic building blocks of spin dynamics: the spin and

spatial tensors, spin operators, and spin systems. Much

of the naming and design for the quantum mechanical

parts are based on GAMMA�s [5] initial ideas. Spatial

tensors are explicitly written out for optimal perfor-

mance. The spin operators are also generated to mini-

mize any computational demand. There is a Rotations

object to aid in optimal generation of rotation matrices
and factors given either spherical or Cartesian spaces.

After the basic tensor components are developed,

BlochLib provides the common Hamiltonians objects:

chemical shift anisotropy (CSA), dipoles, scalar cou-

plings, and quadrupoles (see Table 2). These objects use

the Rotations object in the Cartesian representation

to generate rotated Hamiltonians. The Hamiltoni-

anGen object allows for string input of Hamiltonians to
make arbitrary Hamiltonians or matrix forms more

powerful. For example, the input strings ‘‘45 � p�
ðIx 1 þ Iz 0Þ’’ (Ix 1 þ Iz 0 are the x and z spin operators

for spin 1 and 0, respectively), and ‘‘T21 0; 1 � 56’’

(where T21 0; 1 is the second rank (l ¼ 2;m ¼ 1) spin

tensor between spins 0 and 1), can be parsed by the

HamiltonianGen much like the Parser object. The

SolidSys object combines the basic Hamiltonians,
rotations, and spin operators into a combined object

which generates entire system Hamiltonians and pro-

vides easy methods for performing powder averages and

rotor rotations to the system Hamiltonian. This class can

be extended to any generic Hamiltonian function. In

fact, using the inheritance properties of SolidSys is

imperative for further operation of the algorithm classes

oneFID and compute. The Hamiltonian functions
from the SolidSys object, or another derivative, act as

the basis for the oneFID object that will choose the valid

FID collection method based on rotor spinning or static

Hamiltonians. It uses normal eignvalue propagation for

static samples and the c-compute [31] algorithm for

spinning samples. If the FID is desired over a powder,

the algorithm is parallelized using a powder object. The

powder object allows for easy input of powder orien-
tation files and contains several built in powder angle

generators.

For classical simulations the relevant interactions are

offsets (magnetic fields), T2 and T1 relaxation, radiation

damping, dipole–dipole interactions, bulk susceptibility,

and the demagnetizing field [39] (see Table 3 for more

details). These interactions comprise the basis for the

classical simulations. Each interaction is treated sepa-
rately from the rest, and can be either extended or used

in any combination to solve the system. The grids and

shapes interact directly with the Bloch parameters to

creates large sets of configured spins either in gradients

or rotating environment. New interactions can be added

using the framework given in the library. The interac-

tions are optimally collected using the Interactions

Table 2

Quantum mechanical high field hamiltonian objects and definitions

Interaction (class) Hamiltoniana

CSA (Csa)

xi
iso

0
B@ þ Rt 	 xi

ani

g�1
2

0 0

0 �gþ1

2
0

0 0 1

0
@

1
A 	 Ry

t

0
@

1
A

ð3;3Þ

1
CA� Iz;i

Dipole (Dip) Let

Cij ¼ Rt 	 xij
ani

� 1
2

0 0

0 � 1
2

0

0 0 1

0
@

1
A 	 Ry

t

0
@

1
A

Homonuclear Cijð3; 3Þ � 1ffiffi
6

p ð2Iz;i 	 Iz;j � Ix;i 	 Ix;j � Iy;i 	 Iy;jÞ
n

Heteronuclear Cijð3; 3Þ � 2ffiffi
6

p Iz;i 	 Iz;j
n

Quadrupole (Qua)

Let C ¼ Rt 	
g�1
2

0 0

0 �gþ1

2
0

0 0 1

0
@

1
A 	 Ry

t

0
@

1
A

and xQ ¼ xani

4Iið2Ii�1Þ.

then the first order is xQCð3; 3Þ � 3Iz;i 	 Iz;i
�

and the second orderb is proportional to x2
Q=ðciB0Þ

Scaler coupling (J) Weak coupling J i;j � Iz;i 	 Iz;j
�

Strong coupling J i;j � ðIz;i 	 Iz;j þ Ix;i 	 Ix;j þ Iy;i 	 Iy;jÞ
�

a The Hamiltonians are given in terms of isotropic frequencies (xiso), anisotropic frequencies (xani), and asymmetry (g) as represented in the

principle axis system (PAS). J i;j is the isotopic scalar coupling constant. Each interaction object can have a relative orientation, Rori, specified by three

Euler angles ðw; v; nÞ. Anisotropic and asymmetry terms can be rotated (using the Rotations class) via two separate Euler rotations. The first

Rpow ¼ Rð/; h; cÞ is the powder average rotation, the second Rrot ¼ Rð2pt � xrotor; brotor; 0Þ is the rotation associated with mechanical rotation. Rt will

signify the total rotation. Iðx;y;zÞ;i are the spin, i, associated spin operators. Ie is the identity matrix, B0 is the magnetic field strength, ci is spin i�s gamma

factor, and Ii is spin i�s quantum number.
b See [36] for more detailed second order Hamiltonians.

Table 3

Available classical interactions in BlochLib on the ith spin

Interaction Field equation (~MMiðtÞ �~BBðtÞ)a

Magnetic fieldsb ciMiðtÞ � ðBx;By ;BzÞ
T1 relaxationc 0; 0; M0�MzðtÞ

T1

� �

T2 relaxationd �MxðtÞ
T2

;
�My ðtÞ

T2
; 0

� �
Bulk susceptibilitye DchMziðMyðtÞ;�MxðtÞ; 0Þ
Radiation dampingf 1

srj~MM j ð�hMxðtÞiMzðtÞ;
�hMyðtÞiMzðtÞ;
hMxðtÞiMxðtÞ þ hMyðtÞiMyðtÞÞ

Dipole–dipoleg ~MMiðtÞ � l0

4p

Pspins

i 6¼j

~MMjðtÞ�~MMjðtÞ	r̂r
jri�rj j3

Demagnetizing fieldh ~MMiðtÞ � l0

4p

Pspins
i 6¼j

ð~MMjðtÞ�~MMjðtÞ	r̂rÞDr3

jri�rj j3

Modulated demagnetizing fieldi MiðtÞ � 3ðŝs	B̂B�1Þ
6sd

ðð~MMiðtÞ � h~MMiÞ � ðð~MMiðtÞ � h~MMiÞ 	 r̂rÞr̂rÞ
aMiðtÞ is the magnetization of spin i, hMi is the average magnetization over all the spins, and M0 is the equilibrium magnetization.
b ci is the ith spin gamma factor.
c T1 is a time constant and T1 P 0.
d T2 is a time constant and T2 P 0.
eD is the sample shape factor D ¼ 0 for a sphere, D ¼ 1 for a cylinder, D ¼ 1=3 for a flat disk, and 06D6 1 for all other cases.
f sr is the radiation damping constant and is equal to ð2pcigQM0Þ�1 where g and Q are the probes filling factor and Q factor, respectively.
g l0 is the permittivity of a vacuum, and jri � rjj is the distance between the two spins.
h Dr3 is the volume of a grid cell.
i ŝs is the direction of modulation, B̂B is the direction of the high magnetic field, and sd is the time constant and is equal to ðcl0M0Þ�1. See [37] for

derivation.

276 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 277
object, which is a crucial part of the Bloch object. The
Bloch object is the master container for the spin pa-

rameters, pulses, and interactions. This object is then

used as the main function driver for the BlochSolver

object (a useful interface to the ODE solvers).

As magnetic fields are the main interactions of clas-

sical spins, there is an entire set of objects devoted to

calculating magnetic fields for a variety of coil geome-

tries. The basic shapes of coils, circles, helices, Helm-
holtz, lines, and spirals, are built-in. These particular

objects are heavily parameter based, requiring positions,

turns, start and end points, rotations, centering, lengths,

etc. One can also create other coil geometries and add

them to the basic coil set (examples are provided in the

tool kit). The magnetic fields can be added to the offset

interaction object to automatically create a range of

fields over a grid structure, as well as into other objects
to create rotating or other time dependant field objects.

No toolkit would be complete without examples and

useful programs. Many programs come included with

BlochLib (see Table 4). Also included are several Matlab

visualization functions (see Table 5) that interact di-

rectly with the data output from the magnetic field

generators plotmag, the trajectories from solving the
Table 4

Key examples and implementation programs inside BlochLib

Catagory Foldera

Classical bulksus

dipole

echo

EPI

magfields

rotating_field

splitsol

mas

raddamp

relaxcoord

simple90

yylin

Quantum MMMQMAS

nonsec

perms

shapes

Solid-2.0

Other classes

data_readers

diusion

mpiplay

a These folders correspond to the folders inside the distribution.

Table 5

Available Matlab visualization functions in BlochLib

Matlab function Descrip

Solidplotter A GUI

plotter2D A sub fu

plotmag Provide

plottrag Visualiz
Bloch equations, plottraj, and generic FID and data
visualization, plotter2D and Solidplotter.

2.4. Drawbacks

As discussed above, the power of C++ lies within the

object and templates that allow for the creation of ge-

neric objects, generic algorithms, and optimization.

There are several problems inherent to C++ that can be
debilitating to the developer if they are not understood

properly. The first three problems revolve around the

templates.

Because templated objects and algorithms are ge-

neric, they cannot be compiled until used in a specific

manner (the template is expressed). For example to add

two vectors, the compiler must know what data types

are inside the vector. Most of the main mathematical
kernels in BlochLib cannot be compiled until expressed

(matrices, vectors, grids, shapes, coords, and the ODE

solvers). This can leave a tremendous amount of over-

head for the compiler to unravel when a program is

actually written and compiled.

The other template problem arises from the expres-

sion template algorithms. Each time a new operation is
Description

Bulk susceptibility interaction

Dipole–dipole interaction over a cube

A gradient echo

an EPI experiment [38]

Magnetic field calculators

Using field calculators with the offset interaction

Using field calculators for coil design

Simple spinning grid simulation

Radiation damping interaction

T1 and T2 off the z-axis
Simple 90� pulse on an interaction set

Modulated demagnetizing field example [6]

A complex MQMAS program

Nonsecular quadrupolar terms exploration

Permutations on pulse sequences

A shaped pulse reader and simulator

General solid state NMR simulator

Several �How-To� class examples

Data reader and conversion programs

1D diffusion example

Basic MPI examples

tion

that plots many of the NMR file formats

nction of Solidplotter that performs generic data plotting

s many visualization functions for the magnetic field calculators

ation of magnetization trajectories from classical evolutions

278 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283
performed on an expression template data type (like the
vectors), the compiler must first unravel the expression,

then create the actual machine code. This can require a

large amount of time to perform, especially if the op-

erations are complex. The two template problems

combined require large amounts of memory and CPU

time to perform, however, the numerical benefits usually

overshadow these constraints. For example the bulk-

sus example in BlochLib takes approximately 170Mb
of memory and around 90 s (using gcc 2.95.3) to opti-

mally compile one source file, but the speed increase is

approximately a factor of 10 or greater. Compiler�s
themselves are getting better at handling the template

problems. For the same bulksus example, the gcc 3.1.1

compiler took approximately 100 Mb of memory and

around 45 s of compilation time.
Fig. 6. Time for simulations of Solid (solid line) and Simpson (dashed–

dotted line) as a function of the number of spins. (a) shows the

simulation of a rotary resonance experiment on set pair of spins.

Conditions are the same as those shown in [3, Fig. 5]. (b) shows the

speed of the simulation of a C7 with simulations conditions the same as

those shown in Figure 6e of [3]. In both cases the extra spins are

protons with random CSAs that have no interactions between with the

detected 13C nuclei. Solid tends to be slower for small spin sets as

explained in Section 2.4. All simulations were performed on a 700MHz

Pentium III Xeon (Redhat 7.3), compiled with gcc 2.95.3.
The final template problem arises from expression
template arithmetic, which require a memory copy upon

assignment (i.e., A ¼ B). Non-expression template data

types can pass pointers to memory rather than the entire

memory chunk. For smaller array sizes, the cost of this

copying can be significant with respect to the operation

cost. The effect is best seen in Fig. 5 where the pointer

copying used for the ATLAS test saves a fewMFLOPS as

opposed to the BlochLib version. However, as the ma-
trices get larger the relative cost becomes much smaller.

The last problem for C++ is one of standardization.

The C++ standard is not well adhered to by every

compiler vendor. For instance Microsoft�s Visual C++

will not even compile the most basic template code.

Other compliers cannot handle the memory require-

ments for expression template unraveling (CodeWarrier

(Metrowerks) crashes constantly because of memory
problems from the expression templates). The saving
Fig. 7. The design of the EE program Solid derived from the input

syntax. Three basic sections are needed. Definitions of a solid system

(spins), definition of powder average types, other basic variables and

parameters (parameters and the subsection powder), and finally

the definition of a pulse section where spin propagation and fid col-

lection is defined (pulses). The pulses section contains the majority

of Solid�s functionality. Based on this input syntax, a simple object trail

can be constructed. MultiSolidSys contains at least one (or more)

SolidSys objects. This combined with the powder section/object

defines the Propagation object where the basic propagation algo-

rithms are defined. Using the extendable ScriptParse object, the

SolidRunner object defines the new functions available to the user.

SolidRunner then combines the basic FID algorithms (in the

oneFID object), the Propagation object, and the output classes to

perform the NMR experimental simulation.

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 279
grace for these problems is the GNU compiler, which is
a good optimizing compiler for almost every platform.

GNU g++ 3.2.1 adheres to almost every standard and

performs optimization of templates efficiently.
3. Various implementations

This section will describe a basic design template to
create programs from BlochLib using the specific ex-
Fig. 9. A two spin system as simulated by Solid of the post-C7 sequence

where (a) is collected using a point-to-point acquisition, and (b) is a full

2D collection. The spins system includes a dipole coupling of 1500Hz.

For both (a) and (b) 233 powder average points were used. See http://

waugh.cchem.berkeley.edu/solid/ for the input configuration file.

Fig. 8. A two spin system as simulated by Solid where (a) is with no

spinning, and (b) is with a rotor speed of 2000Hz at the magic angle

(54:7�. The spins system included 2 CSA�s with the first spins param-

eters as xiso ¼ 5000 � 2p, xani ¼ 4200 � 2p, and g ¼ 0, the second spin�s
parameters as xiso ¼ 5000 � 2p, xani ¼ 6012 � 2p, and g ¼ 0:5, with a

scalar J coupling of 400Hz between the two spins. For (a) and (b) 3722

and 2000 powder average points were used respectively. See http://

waugh.cchem.berkeley.edu/solid/ for the input configuration file.
ample of the program Solid. Solid is a generic NMR
simulator. Several other programs are briefly described

within the design template. The emphasis will not be on

the simulations themselves, but more on their creation

and the modular nature the tool kit.

There is potentially an infinite number of programs

that can be derived from BlochLib, however, the tool kit

comes with many of the basic NMR simulations pro-

grams already written and optimized. These programs
serve as a good starting place for many more complex

programs. In Table 4 is a list of the programs included

and their basic function. Some of them are quite com-

plicated while others are very simple. Describing each

one will show a large amount of redundancy in how they

are created. A few of the programs which represent the

core ideologies used in BlochLib will be explicitly con-

sidered in the following sections.

3.1. Solid

The program Solid represents the basic EE quantum

mechanical simulation program. Solids basic function is
Fig. 10. Thebasic design for theFieldCalculator program.There are two

basic parameters sections needed. The first describes the coil geometry

using the basic elements (see text) and any user written coils geometries.

The second describes the Cartesian grids where the field will actually be

calculated.Again once the parameter sets are knowna simple object trail

can be developed. Initially the user must register their own geometries

into the BiotCoil list. The parameters then feed into the XYZshape

and MultiBiot objects. Parallelization can be implemented simply

by defining the MPIworld object and passing it to the MultiBiot

object. The data are written in two formats; into one readable byMatlab

for visualization and into a file readable by the MultiBiot object.

Fig. 11. The magnetic field calculated by the program shown in Fig. 10

given in the magfields folder of the distribution. The Matlab func-

tion, plotmag, was used to generate these figures (see Table 5). The

coil and the sampled grid are shown in (a), the fields along the x; y; z
directions are shown in (b)–(d), respectively.

280 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283
to simulate most 1D and 2D NMR experiments. It be-
haves much like Simpson but is faster for large spin sets

as shown in Fig. 6. It is essentially a parameter parser

which then sends the obtained parameters to the main

kernel for evaluation. The EE diagram (Fig. 1) can be

extended to more specific object usage used in Solid

(Fig. 7). Solid has three stages, parameter input, main

kernel composition, and output structures. The EE

normal section, parameter parser, was written to be the
main interface to the kernel and output sections. It ex-

tends the ScriptParse object to add more simulation

specific commands (spin evolution, FID calculation, and

output).

There are three basic acquisition types Solid can

perform: a standard 1D, a standard 2D, and a point-to-

point (obtains the indirect dimension of a 2D experi-

ment without performing the entire 2D experiment).
Simple 1D simulations are shown in Fig. 8. The results

of a 2D and point-to-point simulation of the post-C7

sequence [32] are shown in Fig. 9 [40].

3.2. Classical program: magnetic field calculators

Included in BlochLib is the ability to calculate mag-

netic fields over arbitrary coil geometries. The main field
Fig. 12. A rough design for a classical Bloch simulation over various

interactions. These programs typically need as much optimization as

possible in order to function optimally over large spin sets. As a result,

the parameter input is expected to be minimal, with the bulk of the

design to aid in optimization of the interaction sets and pulse se-

quences used. Items in gray are optional objects, that can be simply

added in the specific object chain to be used.

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 281
algorithm calculates a discretetized integral of Ampere�s
equation for the magnetic field.

BðrÞ ¼ l0

4p

Z
Iðr0Þ � dlðr0Þ

jr � r0j2
; ð7Þ

where the magnetic field at the point r, BðrÞ, is the

volume integral of the current at r0, Iðr0Þ, crossed into a

observation direction, dlðr0Þ, divided by the square of

the distance between the observation point, r, and the

current point, r0. One way to evaluate this integral nu-
merically, the integral is broken into a sum over little

lines of current (the Biot–Savart law). For this to

function properly numerically, the coil must be divided

into small line segments.

There are numerous coil geometries, but most of the

more complex designs can be broken into a set of

primitive objects. The geometric primitives included in

BlochLib are lines, circles, spirals, helices, an ideal
Helmholtz pair (basically two circles separated by a

distance), a true Helmholtz pair (two sets of overlapping

helices), input files of points, and constant fields.

BlochLib also allows the user to create their own coil

primitives and combine them along with the rest of the
Fig. 13. Simulated data from a HETCOR (Heteronuclear Correlation)

experiment showing the effect of bulk susceptibility on the offset of the
31P. (a) shows the simulated pulse sequence and (b) shows the simu-

lated data. This simulation is an attempt to replicate Fig. 2 from [33].

In order to correctly replicate the figure, the 1H offset had to be

changed to 722Hz (the reference quotes 115Hz as the offset, but it

seems a factor of 2p was omitted (722 ¼ 2p � 115). The T2 relaxation

of the 1H also had to be altered to 0.002 s (the reference quotes 0.015 s,

however the diagram shows a much faster decay then this time).
basic primitives. Fig. 10 shows the basic design of the
field calculator using the MultiBiot object. This pro-

gram is included in BlochLib under the magfields di-

rectory (see Table 4). Fig. 11 shows the data generated

by the program. The input file for this program can be

seen in the magfields folder in the distribution. It

should be noted that the convergence of the integral in

Eq. (7) is simply a function of the number of line seg-

ments you choose for the coils.

3.3. Classical programs: Bloch simulations

Programs of this type are designed to function on

large spin sets optimally based on the interactions

present. The basic layout for these simulation can be see

in Fig. 12. The Grid serves as the basis for much of the

rest of the Bloch interactions and Bloch parameters.
Grids also serve as the basis for gradients and physical

rotations. The interactions are also a key part of the

simulation and can rely on the grid structures as well as
Fig. 14. Simulated resurrection ofmagnetization after a crusher gradient

pulse in the sequence shown in (a). (b) shows the effect of radiation

damping and the modulated demagnetizing field. The result is a non-

linear partial resurrection of magnetization. The input parameters are

those in [6]. The data were plotted using plottrag in the distribution.

282 W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283
any magnetic fields calculated. A pulse on a Bloch sys-
tem represents a type of impulse function to the system.

A pulse should be treated as a separate numerical inte-

gral step due to this impulse nature (such impulses can

play havoc with ODE solvers). The pulses, Bloch pa-

rameters, and interactions are finally wrapped into a

master object, Bloch, which is then fed into the

BlochSolver object which performs the integration.

3.3.1. Bulk susceptibility

One such implementation attempts to simulate the re-

sult obtained in [33, Fig. 2]. This is a HETCOR (hetero-

nuclear correlation) experiment between a proton and a

phosphorous. The delay in the HETCOR sequence (see

Fig. 13a) allows the offset of the 1H to evolve. Next the 1H

magnetization is placed back on the z-axis. The z-mag-

netization of the proton will oscillate (its magnitude ef-
fected by the time evolved under the delay). If one then

places the 31P magnetization in the xy-plane and collects

an FID, the 31P will feel a slight offset shift due to the

varying 1H z-magnetization (effect of the bulk suscepti-

bility). Thus in the indirect dimension an oscillation of the
31P magnetization due to the protons will be observed.

The results is shown in Fig. 13b and matches the result

obtained in [33]. The code for this diagram is in the
bulksus folder of the distribution.

3.3.2. Radiation damping

Another interesting implementation attempts to em-

ulate the result obtained by Lin et al. [6]. In this simu-

lation, the interplay between radiation damping and the

demagnetizing field resurrect a completely crushed

magnetization (a complete helical winding). Radiation
damping is responsible for the resurrection as the de-
Fig. 15. The magnetic field distribution of two standard Solid State NMR pro

radius of 0.3175 cm) as well as the region of interest for the magnetic field (b

0.3175 cm and a splitting of 0.6 cm) as well as the region of interest for the ma

coil in (a) for a proton given a 0.5A current. The small peak to the right of t

shows the effective inhomogeneity of such the coil in (b) for a proton given a 3

connecting the two helical segments. The average field of the coil was subtra
magnetizing field alone does not resurrect the crushed
magnetization. The simulated data (Fig. 14b) matches

the data found in [6, Fig. 2]. The code for this diagram is

in the yylin folder of the distribution.

3.3.3. Probe coils

The final example involves analyzing an NMR probe

coil design. Dynamic angle spinning (DAS) [34] experi-

ments require the probe stator to move during the ex-
periment. A solenoid coil moves with the stator, however,

as the stator angle approaches 0 degrees (with respect to

the high field), there would be little detected signal (or

pulse power transmission) because the high static mag-

netic field and coils field are parallel (resulting in a 0 cross

product). One can remove this shortcoming by removing

the coil from the stator. But this represents its own

problem if the coil is a solenoid, because the stator is large
compared to the sample, and thus the solenoidwould also

have to be large thus reducing the filling and quality factor

too much to detect any signal. A suitable alteration to the

solenoidwould be to split it. The entire probe design is the

subject of a forth coming paper [35]. To optimize the split

solenoid design one needs to see factors like inhomoge-

neities and effective power within the sample area. Fig.

15b shows a split solenoid design as well the inhomoge-
neity (Fig. 15d) profile along the xy-plane (the high field

removes any need for concern about the z-axis). Com-

pared with a normal solenoid, Fig. 15a, the field profile is

much more distorted (Fig. 15c), also given the same cur-

rent in the two coils, the solenoid has six times more field

in the region of interest then the split-coil design. The

figure also shows us a weak spot in the split-coil design.

Thewire that connects the two helices creates themajority
of the asymmetric field profile, and is the major contrib-
be detection coil. (a) shows a standard solenoid coil (10 turns/cm with a

lack points). (b) shows the split solenoid (3 turns/cm with a radius of

gnetic field (black points). (c) shows the effective inhomogeneity of the

he main peak is the edges of the sampled rectangle close to the coil. (d)

.0A current. The majority of the inhomogeneity is due to the small line

cted from the result in (c) and (d).

W.B. Blanton / Journal of Magnetic Resonance 162 (2003) 269–283 283
utor to the inhomogeneity across the sample. Correcting
this by a U shape (or equivalent) should aid in correcting

the profile.
4. Conclusions

Throughout the paper, emphasis on the generic phys-

ical simulation design is discussed for the specific case of
NMR. The created tool kit, BlochLib, adheres to these

basic design ideas (OOP, inheritance, and expression-

templates). BlochLib is designed to be the next generation

of simulation tool kits for NMR. It is highly optimized

and generalized for almost any NMR simulation situa-

tion. It has been shown that utilizing relatively modern

numerical techniques and algorithms allows a study of

more complicated spin dynamics under various interac-
tions and experimental designs then previous NMR tool

kits. The input of complex parameters, coding, and cre-

ationof programs should be easy andhighly optimized for

both the classical and quantum mechanical aspects of

NMR. Diffusion and other partial differential equation

entities (like fluid flow) are currently being designed for

inclusion into the tool kit. Relaxation using normal

Louville space operators and Redfield approximations
should also be included. The total tool kit and docu-

mentation can be found at http://waugh.cchem. berke-

ley.edu/blochlib/.
Acknowledgments

The author wished to thank Robert Havlin and Jamie
Walls for quantum mechanical discussions, Andreas

Trabesinger for classical discussions, John Logan for as-

sistance with the quadrupole interactions, Dimitri Sak-

ellariou for field calculation discussions, Josef Granweh

for useful comments, and Alex Pines for his support. This

work was supported by the Director, Office of Science,

Office of Basic Energy Sciences, Materials Science and

Engineering Division, US Department of Energy under
Contract No. DE-AC03-76SF00098.
References

[1] R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear

Magnetic Resonance in One and Two Dimensions, Clarendon

Press, Oxford, 1989.

[2] J. Walls, W.B. Blanton, R.H. Havlin, A. Pines, Chem. Phys. Lett.

363 (2002) 372–380.

[3] M. Bak, J.T. Rasmussen, N.C. Nielsen, J. Magn. Reson. 147

(2000) 296.

[4] P. Hodgkinson, L. Emsley, Prog. Nucl. Magn. Reson. Spectrosc.

36 (2000) 201.

[5] S. Smith, T. Levante, B. Meier, R. Ernst, J. Magn. Reson. 106a

(1994) 75.
[6] Y.Y. Lin, N. Lisitza, S.D. Ahn, W.S. Warren, Science 290 (5489)

(2000) 118.

[7] C.A. Meriles, D. Sakellariou, H. Heise, A.J. Moule, A. Pines,

Science 293 (2001) 82.

[8] H. Heise, D. Sakellariou, C.A. Meriles, A. Moule, A. Pines, J.

Magn. Reson. 156 (2002) 146.

[9] T.M. Brill, S. Ryu, R. Gaylor, J. Jundt, D.D. Griffin, Y.Q. Song,

P.N. Sen, M.D. Hurlimann, Science 297 (2002) 369.

[10] R. McDermott, A.H. Trabesinger, M. Muck, E.L. Hahn, A.

Pines, J. Clarke, Science 295 (2002) 2247.

[11] J.D. Walls, M. Marjanska, D. Sakellariou, F. Castiglione, A.

Pines, Chem. Phys. Lett. 357 (2002) 241.

[12] R.H. Havlin, G. Park, A. Pines, J. Magn. Reson. 157 (2002) 163.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley,

Boston, MA, 1995.

[14] B. Stroustrup, The C++ Programming Language, third ed.,

Addison-Wesley, Boston, MA, 1997.

[15] S. Haney, Comput. Phys. 8 (6) (1994) 690.

[16] T.L. Veldhuizen, M.E. Jernigan, in: Proceedings of the 1st

International Scientific Computing in Object-Oriented Parallel

Environments (ISCOPE�97), Lecture Notes in Computer Science,

Springer, Berlin, 1997.

[17] T. Veldhuizen, C++ Rep. 7 (5) (1995) 26.

[18] T. Veldhuizen, C++ Rep. 7 (4) (1995) 36.

[19] U.W. Eisenecker, K. Czarnecki, Generative Programming—To-

wards a New Paradigm of Software Engineering, Addison Wesley,

Boston, MA, 2001.

[20] C. Pescio, C++ Rep. 9 (7) (1997).

[21] W. Clint, Automatically Tuned Linear Algebra Software (AT-

LAS), URL http://math-atlas.sourceforge.net.

[22] M. Frigo, S.G. Johnson, Tech. Rep., Massachusetts Institute of

Technology, 1997, URL http://fftw.org.

[23] E. Lusk, Tech. Rep., University of Tennessee, 1997, URL http://

www.mpi-forum.org.

[24] F. James, Tech. Rep., Computing and Networks Division CERN

Geneva, Switzerland, 1998, URL http://wwwinfo.cern.ch/asdoc/

minuit/minmain.html.

[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,

Numerical Recipes in C. The Art of Scientific Computing,

Cambridge University Press, Cambridge, 1997.

[26] J.R. Cash, A.H. Karp, ACM Transactions on Mathematical

Software, vol. 16, 1990.

[27] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis,

Springer, Berlin, 1980.

[28] P. Deuflhard, Numer. Math. 41 (1983) 399.

[29] P. Deuflhard, SIAM Rev. 27 (1985) 505.

[30] G. Bader, P. Deuflhard, Numer. Math. 41 (1983) 373.

[31] M.Hohwy,H. Bildse,N.C.Nielsen, J.Magn.Reson. 136 (6) (1999).

[32] M. Hohwy, H.J. Jakobsen, M. Eden, M.H. Levitt, N.C. Nielsen,

J. Chem. Phys. 108 (1998) 2686.

[33] M.P.Augustine,K.W. Zilm, J.Magn.Reson. Ser. A 123 (1996) 145.

[34] Mueller K.T., B. Sun, G. Chingas, J. Zwanziger, T. Terao, A.

Pines, J. Magn. Reson. 86 (3) (1990) 470.

[35] R.H. Havlin, T. Mazur, W.B. Blanton, A. Pines, 2002, in

preparation.

[36] S. Wi, L. Frydman, J. Chem. Phys. 112 (7) (2000) 3248.

[37] G. Deville, M. Bernier, J.M. Delrieux, Phys. Rev. B 19 (11) (1979)

5666.

[38] M.K. Stehling, R. Turner, P. Mansfield, Science 254 (5028) (1991)

43.

[39] In the current version of BlochLib, other flow type interactions

like diffusion are not treated.

[40] The website http://waugh.cchem.berkeley.edu/solid/ has the input

configuration for these simulations and other simulations.

http://waugh.cchem.berkeley.edu/blochlib/
http://waugh.cchem.berkeley.edu/blochlib/
http://math-atlas.sourceforge.net
http://fftw.org
http://www.mpi-forum.org
http://www.mpi-forum.org
http://wwwinfo.cern.ch/asdoc/minuit/minmain.html
http://wwwinfo.cern.ch/asdoc/minuit/minmain.html
http://waugh.cchem.berkeley.edu/solid/

	BlochLib: a fast NMR C++ tool kit
	Introduction
	Design
	Existing numerical tool kits
	Experimental and theoretical evolutions for NMR simulations
	BlochLib layout
	Drawbacks

	Various implementations
	Solid
	Classical program: magnetic field calculators
	Classical programs: Bloch simulations
	Bulk susceptibility
	Radiation damping
	Probe coils

	Conclusions
	Acknowledgements
	References

